Jakarta MVC 3.0 Technology
Compatibility Kit
Documentation & Usage Guide

Jakarta MVC Project

Version 3.0.0

Table of Contents

1. Introduction
1.1. TCK Primer
1.2. Compatibility Testing
1.3. About the MVC TCK
1.4. TCK Components
1.5. Passing the Jakarta MVC 3.0 TCK
2. Appeals Process
3. Coverage report
3.1. Jakarta MVC 3.0 TCK Assertions
3.2. The Coverage Report
4. Running the TCK tests
4.1. The TCK runner template
4.2. Adjusting the template project
4.3. Update Arquillian configuration
4.4. Provide a custom BaseArchiveProvider
5. Running the signature tests
5.1. Obtaining the sigtest tool
5.2. Preparing the environment
5.3. Running the signature test
5.4. Forcing a signature test failure

N g o o G R W N R Rl

[S Yy
N — ==

Chapter 1. Introduction

This guide describes how to download, install and run the Technology Compatibility Kit (TCK) for
the Jakarta MVC Specification 3.0.

1.1. TCK Primer

A TCK, or Technology Compatibility Kit, is one of the three required pieces for any JSR (the other
two being the specification document and the reference implementation). The TCK is a set of tools
and tests to verify that an implementation of the technology conforms to the specification. The tests
are the primary component, but the tools serve an equally critical role of providing a framework
and/or set of SPIs for executing the tests.

The tests in the TCK are derived from assertions in the written specification document. The
assertions are itemized in an XML document, where they each get assigned a unique identifier, and
materialize as a suite of automated tests that collectively validate whether an implementation
complies with the aforementioned assertions, and in turn the specification. For a particular
implementation to be certified, all the required tests must pass (meaning the provided test suite
must be run unmodified).

A TCK is entirely implementation agnostic. It should validate assertions by consulting the
specification’s public API.

1.2. Compatibility Testing

The goal of any specification is to eliminate portability problems so long as the program which uses
the implementation also conforms to the rules laid out in the specification.

Executing the TCK is a form of compatibility testing. It’s important to understand that compatibility
testing is distinctly different from product testing. The TCK is not concerned with robustness,
performance or ease of use, and therefore cannot vouch for how well an implementation meets
these criteria. What a TCK can do is to ensure the exactness of an implementation as it relates to the
specification.

Compatibility testing of any feature relies on both a complete specification and a complete
reference implementation. The reference implementation demonstrates how each test can be
passed and provides additional context to the implementor during development for the
corresponding assertion.

1.3. About the MVC TCK

The Jakarta MVC 3.0 TCK is designed as a portable, configurable and automated test suite for
verifying the compatibility of an implementation of the Model-View-Controller Specification. The
test suite is built atop JUnit and provides a series of extensions that allow runtime packaging and
deployment of Java EE artifacts for in-container testing (Arquillian).

Each test class in the suite acts as a deployable unit. The deployable units, or artifacts, are defined

in a declarative way using annotations.

1.4. TCK Components
The Jakarta MVC 3.0 TCK includes the following components:
* The test suite, which is a collection of JUnit tests and supplemental resources that configure the
runtime and other software components.

* The TCK audit (tck-audit.xml) used to list out the assertions identified in the Jakarta MVC 3.0
specification. It matches the assertions to test cases in the test suite by unique identifier and
produces a coverage report. The audit document is provided along with the TCK. Each assertion
is defined with a reference to a chapter, section and paragraph from the specification
document, making it easy for the implementor to locate the language in the specification
document that supports the feature being tested.

* A setup example demonstrating Maven and Ant setups to run the TCK test suite.

1.5. Passing the Jakarta MVC 3.0 TCK

In order to pass the Jakarta MVC 3.0 TCK, you need to:

* Pass the Jakarta MVC 3.0 signature tests (see Running the signature tests) asserting the
correctness of the Jakarta MVC 3.0 API used.

* Run and pass the test suite (see Running the TCK tests).

Chapter 2. Appeals Process

As stated by the TCK process,window=blank, _Specifications are the sole source of truth and
considered overruling to the TCK in all senses. Therefore, during the implementation of a
specification it can happen, that the implementing party is considering a test of this TCK as non-
conform to the specification. To get this problem resolved, the implementing party can create a
challenge for the test.

To file a challenge, please create an issue in the MVC TCK issue tracker,window=_blank} as
described in the link:https://jakarta.ee/committees/specification/tckprocess#_filing_a_challenge[TCK
process - Filing a challenge,window=_blank.

https://jakarta.ee/committees/specification/tckprocess/
https://jakarta.ee/committees/specification/tckprocess/
https://jakarta.ee/committees/specification/tckprocess/
https://jakarta.ee/committees/specification/tckprocess/
https://github.com/eclipse-ee4j/mvc-tck/issues/
https://github.com/eclipse-ee4j/mvc-tck/issues/
https://github.com/eclipse-ee4j/mvc-tck/issues/

Chapter 3. Coverage report

A specification can be distilled into a collection of assertions that define the behavior of the
software. This section introduces the Jakarta MVC 3.0 TCK coverage report, which documents the
relationship between the assertions that have been identified in the Jakarta MVC 3.0 specification
document and the tests in the TCK test suite.

The structure of this report is controlled by the assertion document, so we’ll start there.

3.1. Jakarta MVC 3.0 TCK Assertions

The Jakarta MVC 3.0 TCK developers have analyzed the Jakarta MVC 3.0 specification document and
identified the assertions that are present in each chapter.

The assertions are listed in an XML file which is generated from the specification document. Each
assertion is identified by the section of the specification document in which it resides and a unique
paragraph identifier to narrow down the location of the assertion further.

See the following example of an example:

<section id="controllers" title="Controllers" level="2">
<I-- .0 -=>
<assertion id="ctr1-method">
<text>An MVC controller is a JAX-RS resource method decorated by @Controller</text>

</assertion>
<l-- ., -
</section>

The strategy of the Jakarta MVC 3.0 TCK is to write a test which validates this assertion when run
against an implementation. A test case (a method annotated with @Test) is correlated with an
assertion using the @org.jboss.test.audit.annotations.SpecAssertion annotation as follows:

@RunWith(Arquillian.class)
@SpecVersion(spec = "mvc", version = "1.0")
public class ControllerAnnotationTest {

/* more tests */

@Test
@SpecAssertion(section = Sections.MVC_CONTROLLERS, id = "ctrl-method")
public void controllerMethod() throws IOException {

// test implementation

}

/* more tests */

To help evaluate the distribution of coverage for these assertions, the TCK provides a detailed
coverage report. This report is also useful to help implementors match tests with the language in
the specification that supports the behavior being tested.

3.2. The Coverage Report

The coverage report is an HTML report generated as part of the TCK project build. Specifically, it is
generated by an annotation processor that attaches to the compilation of the classes in the TCK test
suite. The report is written to the directory tests/target/coverage-report/.

The report itself has three main sections:

Chapter Summary

List the chapters in the specification document along with total assertions, tests and coverage
percentage.

Section Summary

Lists the sections in the specification document along with total assertions, tests and coverage
percentage.

Coverage Detail

Each assertion and the test that covers it, if any.

The coverage report is color coded to indicate the status of an assertion, or group of assertions. The
status codes are as follows:

Covered

Test exists for this assertion

Not covered

No test exists for this assertion

Unimplemented

A test exists, but is unimplemented

Untestable

the assertion has been deemed untestable, a note, explaining why, is normally provided

For reasons provided in the tck-audit.xml document and presented in the coverage report, some
assertions are not testable.

Chapter 4. Running the TCK tests

This chapter describes how to run and configure the TCK test suite against a given Jakarta MVC 3.0
implementation in a given Java EE container. The testsuite uses Arquillian to execute tests against
real Java EE containers. It is strongly recommended making yourself familiar with the Arquillian
documentation. It will give you a deeper understanding of the different parts described in the
following sections.

4.1. The TCK runner template

The TCK contains a directory sample which contains an example project for running the TCK and
which should be used as a template for creating new projects. This sample project is using the
reference implementation Eclipse Krazo and runs the TCK against Eclipse Glassfish 8.x.

The project is using Apache Maven is contains just three files:

pom. xml

The Maven POM file imports the TCK BOM, declares all required dependencies and configure the
Maven Surefire Plugin to run the tests defined by the Jakarta MVC 3.0 TCK.

arquillian.xml

This file configures Arquillian to deploy the web applications which are used by the TCK tests to
Eclipse Glassfish.

KrazoGlassfishProvider.java

This Java class is an implementation of the ee.jakarta.tck.mvc.api.BaseArchiveProvider interface
which is part of the TCK. The responsibility of the archive provider is to create a base
Shrinkwrap archive which is used by all TCK tests. The archive produced by the provider
depends on the specific environment you are running the tests against. As Jakarta MVC 3.0 API
and implementation is not provided by Eclipse Glassfish, the KrazoGlassfishProvider builds and
archive which adds the API JAR and Eclipse Krazo to the /WEB-INF/1ib directory of the archive so
that both are deployed as part of the web application.

Running the TCK is simple. First you have to download, unpack and start Eclipse GlassFish 8.x. Then
just execute the following command in the sample project folder to run the TCK against this Eclipse
GlassFish 8.x instance:

mvn verify

After a few minutes you should get an output like this:

[...]

Running org.mvcspec.tck.tests.mvc.controller.mediatype.MediaTypeTest

Tests run: 2, Failures: @, Errors: @, Skipped: @, Time elapsed: 1.109 sec - in
org.mvespec.tck.tests.mve.controller.mediatype.MediaTypeTest

Running org.mvcspec.tck.tests.mvc.controller.inject.InjectParamsTest

Tests run: 5, Failures: @, Errors: @, Skipped: @, Time elapsed: 1.047 sec - in
org.mvespec.tck.tests.mvc.controller.inject.InjectParamsTest

http://arquillian.org/

Results :
Tests run: 132, Failures: @, Errors: @, Skipped: 0

[...]

[INFO] mmm oo oo o o oo o
[INFO] BUILD SUCCESS

[INFO] ---------------mmmmmm o
[INFO] Total time: 01:02 min

[INFO] Finished at: 2019-11-15T08:21:54+01:00

[INFO] —-mmm oo o oo o oo o oo oo

Congratulations! You just ran the Jakarta MVC 3.0 TCK!

4.2. Adjusting the template project

If you want to run the Jakarta MVC 3.0 TCK against a different environment, you should start from
the template project and adjust it like described in the following sections.

4.3. Update Arquillian configuration

If you want to run the TCK against a different container, you will typically have to adjust the
Arquillian configuration. In most cases this is really easy, because Arquillian already supports a
wide range of containers. However, it is strongly recommended having a deeper look at the
Arquillian documentation to learn more.

Generally, you will have to follow these steps:
* Replace the arquillian-glassfish-remote-3.1 Arquillian adapter with the adapter for your

environment in the pom. xml file.

* Then adjust the arquillian.xml file as described in the Arquillian adapter documentation. This
typically includes adjusting port numbers and providing credentials for performing remote
deployments.

As mentioned above, the details depend on the specific environment.

4.4. Provide a custom BaseArchiveProvider

The BaseArchiveProvider is used by the TCK to create a base web application archive capable of
running Jakarta MVC 3.0 application in the specific target environment. The TCK then just adds
controllers, views and other artifacts to that base archive and deploys it to the target container.

As the template project runs the TCK against Eclipse Glassfish 6.0.0 which doesn’t provide support
for Jakarta MVC 3.0 out of the box, the corresponding archive provider creates a web application
archive which includes both the Jakarta MVC 3.0 API JAR and the reference implementation Eclipse
Krazo in /WEB-INF/1ib.

The default implementation provided with the template project looks like this:

http://arquillian.org/docs/

public class KrazoGlassfishProvider implements BaseArchiveProvider {

@0verride
public WebArchive getBaseArchive() {

File[] dependencies = Maven.resolver()

.resolve(
"javkarta.mvc:jakarta.mvc-api:3.0.0",
"org.eclipse.krazo:krazo-core:3.0.0",
"org.eclipse.krazo:krazo-jersey:3.0.0"

)
.withoutTransitivity()

.asFile();

return ShrinkWrap.create(WebArchive.class)
.addAsLibraries(dependencies);

You will have to create a similar class which does the same for the environment you want to run
the test against.

If your container provides Jakarta MVC 3.0 support out of the box, you would have to create an
implementation which returns an empty archive like this:

public class EmptyArchiveProvider implements BaseArchiveProvider {

@0verride
public WebArchive getBaseArchive() {
return ShrinkWrap.create(WebArchive.class);

}

The TCK uses a Java system property to learn about the implementation that should be used for
building archives. This system property is configured using the Maven Surefire Plugin
configuration in your pom.xml. The relevant section in the template project looks like this:

<plugin>

<artifactId>maven-surefire-plugin</artifactId>

<version>2.19.1</version>

<configuration>
<dependenciesToScan>jakarta.mvc.tck:mvc-tck-tests</dependenciesToScan>
<systemProperties>

<BaseArchiveProvider>
jakarta.mvec.tck.runner.KrazoGlassfishProvider

</BaseArchiveProvider>
</systemProperties>
</confiquration>
</plugin>

If you provide a custom implementation of ArchiveBaseProvider, you will have to adjust the
configuration and change the FQCN if the implementation class.

Chapter 5. Running the signature tests

One of the requirements of an implementation passing the TCK is for it to pass the Jakarta MVC 3.0
signature test. This section describes how to run it against your implementation.

5.1. Obtaining the sigtest tool

To run the signature tests against an implementation, you will need the Sigtest tool. You can
download the latest version here:

https://download.java.net/sigtest/download.html
The process has been tested against sigtest-3_0-dev-bin-b09-24_apr_2013.zip.

Download the corresponding ZIP file and unpack it to some location:

mkdir ${HOME}/sigtest && cd $_
wget http://download.java.net/sigtest/3.0/PreRel/sigtest-3_0-dev-bin-b@9-24_apr_2013.zip
unzip sigtest-3_0-dev-bin-b09-24_apr_2013.zip

Now set the following environment variables:

SIGTEST_HOME
Directory of the just downloaded Sigtest tool.

JAVA_HOME

Location of the JDK you want to use for the test.

If you use the installation directory from the example above:

export SIGTEST_HOME=${HOME}/sigtest/sigtest-3.0
export JAVA_HOME=/1ib/jvm/java-1.8.0

o It is strongly recommended to use Java 8 for running the signature tests, because
the Sigtest tool doesn’t work well with newer Java versions.

5.2. Preparing the environment

To run the signature tests, you will need obtain three files. To simplify the invocation of the Sigtest
tool, it is recommended to place all files in the same directory and to run the Sigtest from this
directory:

mkdir ${HOME}/sigtest/mvc/ && cd $_
First you will need to get the Java EE 8 API JAR. You can download this directly from Maven Central:

10

https://download.java.net/sigtest/download.html

wget https://repol.maven.org/maven2/jakarta/platform/jakarta.jakartaee-api/9.0.0/jakarta.jakartaee-api-9.0.0.jar

Next, you will need the implementation JAR of the Jakarta MVC 3.0 APIL In this example we will
simply use the official API JAR.

wget https://repol.maven.org/maven2/jakarta/mvc/jakarta.mvc-api/3.0.0/jakarta.mvc-api-3.0.0.jar
Finally you will need the .sigtest definition file, which you can also get from Maven Central:
wget https://repol.maven.org/maven2/jakarta/mve/tck/mve-tek-sigtest/3.0.0/mvc-tck-sigtest-3.0.0.sigfile

Now you are ready to run the signature tests.

5.3. Running the signature test

${JAVA_HOME}/bin/java -jar ${SIGTEST_HOME}/1ib/sigtestdev.jar SignatureTest \
-Classpath "${JAVA_HOME}/jre/lib/rt.jar:./jakarta.jakartaee-api-9.0.0.jar:./jakarta.mvc-api-3.0.0.jar" \
-Package jakarta.mvc \
-FileName ./mvc-tck-sigtest-3.0.0.sigfile \
-static

If the test is successful, you should see an output like this:

SignatureTest report

Base version: 3.0.0

Tested version:

Check mode: src [throws normalized]
Constant checking: on

STATUS:Passed.

5.4. Forcing a signature test failure

To verify that the signature test works correctly, you can modify the signature file:

CLSS public abstract interface jakarta.mvc.Models

intf java.lang.Iterable<java.lang.String>

meth public abstract <%0 extends java.lang.Object> {%%0} get(java.lang.String,java.lang.Class<{%%0}>)
meth public abstract java.lang.Object get(java.lang.String)

meth public abstract java.util.Map<java.lang.String,java.lang.0Object> asMap()

meth public abstract jakarta.mvc.Models put(java.lang.String,java.lang.0Object)

You can for example delete the line containing the definition of the get method. Now run the

11

signature test again. The check should fail like this:

SignatureTest report

Base version: 3.0.0

Tested version:

Check mode: src [throws normalized]
Constant checking: on

Added Methods

jakarta.mvc.Models: method public abstract java.lang.Object jakarta.mvc.Models.get(java.lang.String)

STATUS:Failed.1 errors

12

	Jakarta MVC 3.0 Technology Compatibility Kit: Documentation & Usage Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. TCK Primer
	1.2. Compatibility Testing
	1.3. About the MVC TCK
	1.4. TCK Components
	1.5. Passing the Jakarta MVC 3.0 TCK

	Chapter 2. Appeals Process
	Chapter 3. Coverage report
	3.1. Jakarta MVC 3.0 TCK Assertions
	3.2. The Coverage Report

	Chapter 4. Running the TCK tests
	4.1. The TCK runner template
	4.2. Adjusting the template project
	4.3. Update Arquillian configuration
	4.4. Provide a custom BaseArchiveProvider

	Chapter 5. Running the signature tests
	5.1. Obtaining the sigtest tool
	5.2. Preparing the environment
	5.3. Running the signature test
	5.4. Forcing a signature test failure

