
Model-based testing of timed systems with

DIVERSITY

Introduction Model-based testing (MBT) uses models of systems for the
derivation of test data and for the assessment of the conformance of executions.
We use timed automata as models enriched with variables to abstractly denote
system states (we call them data variables) and variables to capture timing con-
straints (we call them clocks) on system executions. DIVERSITY is based on
symbolic execution which is a technique used here to analyze model behaviors
with the goal of performing model-based testing activities. Symbolic execution
main principle is to reason about all the possible executions of the model by
studying how the assignments of its variables evolve when transitions are ex-
ecuted. In practice the variables are assigned with formal parameters. Then
constraints on those formal parameters are computed in order to characterize
the effect on the global executions of the guards and instructions occurring in
transitions.

• Part I Symbolic execution provides an initiation to symbolic execution.
Symbolic execution represents the set of possible executions of a model as
a tree. As in whole generality such a tree could be infinite it is important
to use so-called coverage criteria to qualify the space of behaviors that we
want to cover. In Part I, the usage of such coverage criteria is explored.

DIVERSITY module exploration strategy coverage

symbolic execution BFS/Hit-Or-Jump transition, state

• Part II Off-line testing is about how to use symbolic execution for
model-based testing processes. We focus on offline testing techniques
where test data are precomputed from the model (which contrasts with
online testing where the test data are generated while executing the test).
In offline testing, real executions of the System Under Test (SUT) are
post-processed on the model to deliver a verdict.

DIVERSITY module algorithm verdicts

testing off-line PASS, FAIL,
Inconclusive, WeakPass

Running example: Thermostat system We consider a small example of a
thermostat system which automatically controls heating or/and cooling equip-
ment. The objective is to maintain the temperature within a certain range

1

Tmin ≤ t ≤ Tmax. The system consists of two communicating components as
follows:

dt

error
equipscreen

sens dt

error
equip

thermostat equipment

Figure 1: Thermostat system architecture

• the thermostat control component receives from the environment (here a
sensor) a measure of the ambient temperature through the channel sens.
When this temperature is not within the range defined by Tmin and Tmax,
the control asks the equipment to adjust the temperature: it transmits
through channel dt the difference between the sensed temperature and the
exceeded threshold (either Tmin − t or Tmax − t). The thermostat control
also displays on a screen the heating/cooling/off status of the equipment.

• the equipment component heats/cools at ±4 degrees/time unit. It then
notifies the thermostat either of its successful action on channel equip or
of a failure on channel error.

Part I

Symbolic framework

1 The model

Consider the automaton of the thermostat control component in Figure 2.

1. [Understanding the example] The automaton has two operating modes:
cooling and heating. Given that we want to keep the temperature between
20 and 25 degrees (Tmin = 20, Tmax = 25), identify the transitions of the
equipment TIOSTS which are associated with the cooling (respectively
heating) mode and explain the purpose of each of them. Hint: the sensed
temperature is stored in the variable t of the thermostat TIOSTS.

Notes: Consider now the TIOSTS of the equipment component in Fig-
ure 3. In fact, the thermostat system is modeled by means of two TIOSTSs
which communicate through shared channels which are internal to the sys-
tem as illustrated in Figure 1. For instance, consider the action dt!Tmax−t
of the thermostat: this action can be fired if and only if the equipment is

2

Figure 2: TIOSTS of the thermostat component

ready to receive it thanks to the action dt?x, and in this case the value of
x is immediately assigned to Tmax − t. Transitions labeled by those two
actions are thus considered to be executed at the same time.

Figure 3: TIOSTS of the equipment component

2. [Coding in DIVERSITY] Complete the implementation of the system

3

given in the file Diversity/Specification/thermostatSystem.xlia1

by adding the transitions missing from the equipment TIOSTS.

Recall that {c} is an action that resets clock c, in Diversity this is executed
by the code c = 0; (Timed) guards are denoted as parameters of the
command (tguard) guard.

2 Exercise: Symbolic execution

The idea is to compute all possibles executions of the thermostat system as a
symbolic tree using Diversity. Symbolic execution trees may be infinite struc-
tures (due to some repetitive behavior in the specification). The construction of
the symbolic tree is subject to the strategy chosen for the tree traversal (e.g. a
Breadth First Search strategy, BFS in short) and to the choice of unconditional
stopping criterion (e.g. limits on symbolic tree size such as maximum height,
maximum width, ...). The construction of the symbolic tree may be stopped
before when a coverage goal is achieved (e.g. covering some/all transitions in
the model). The objective of this part is: i) to get familiar with some classical
stopping criteria implemented in DIVERSITY, ii) and next to use an advanced
“Reachability Heuristics” in order to select specific behaviors (as paths in the
symbolic tree) covering some consecutive transitions of the model.

1. [Exploration strategies and limits on symbolic tree size.] Con-
struct all the paths of the symbolic execution tree of thermostat model
of length at most three and whose last action is an output. The goal is
now to identify the succession of transitions covered by the tool and to
identify the corresponding path conditions. As glimpsed before, the ther-
mostat introduces three modes heating/cooling/off modes: what is the
mode associated with each path?

Notes: The following screenshots respectively indicate how to configure
the exploration strategy and the where to fill in the limits on the size of
the symbolic tree.

1”xLIA” which stands for eXecutable Language for Interaction Assemblage is the entry
language of the DIVERSITY tool.

4

In order to launch the symbolic execution, click on the button in the
form of a white triangle on green round background: it is located in the
upper menu bar indicated by the red arrow in the left screenshot (be sure
that the launch configuration ”PartI SymbEx” is active and parametrized
properly). The symbolic tree is generated as a file in the gv graphical
format here

Diversity/SymbolicExecution/Output/symbex_output.gv - open it by
clicking right on this file and successively choosing ”Symbolic Execution
Workflow” then ”GraphViz” (Before, it may be necessary to refresh the
folder Diversity/SymbolicExecution/ by using the F5 keyboard key).

2. [Transitions coverage] Its exploration objective is to cover at least once
any transition of the model. What is the rate of transitions coverage of
the thermostat model with a maximum symbolic tree height respectively
of five and then of ten?

Notes: The following screenshot shows how to switch to the ”Transition
coverage” tab.

3. [Hit-Or-Jump] We use the so-called Hit-Or-Jump coverage heuristic to
build a symbolic tree (in fact reduced to a path) covering a declared se-
quence of (possibly non consecutive) transitions. First, a symbolic tree
is computed in width for a given maximal depth. Once it is computed,
an analysis is realized to study whether or not a part of the sequence has
been covered in this tree:

• if some non empty prefixes of the sequence have been covered, the
tool identifies the set of paths that covered the greatest prefix, and
chooses one among them in a random way,

• else the tool chooses one path in a random way.

Once a path is chosen all other paths are erased and the whole process
starts again from the last symbolic state of the path (i.e. the target
state of the last symbolic transition of the path) until the sequence is
fully covered. Of course nothing ensures that the strategy will succeed
to cover the whole sequence of transitions, therefore a stopping criteria is

5

also defined (in terms of maximal number of computed symbolic states in
our case).

As a first step, the objective is to cover the heating mode of the equipment.
For this purpose, you need to run a customized symbolic execution with
the Hit-Or-Jump strategy in order to cover the transition of the equipment
TIOSTS e22 = (s2, c ≤ 1, x > 0, {c}, output equip(+4), x := x− 4, s2).

Notes: The screenshot below shows how to switch to the ”behavior se-
lection” tab before (as indicated by the red arrow) which allows to fill in
parameters on the Hit-Or-Jump form.

Now, choose the adequate transition (and change the parameter the launch
configuration ”PartI SymbEx” accordingly) in order to cover:

• the cooling mode of the equipment,

• a TIMEOUT error of the equipment,

and identify again the corresponding succession of transitions covered by
the tool, the corresponding symbolic trace and the path conditions over
time and data.

4. [Trace generation] Symbolic paths represent classes of behaviors. To
generate a concrete one, Diversity calls SAT-solvers.

The launch configuration ”PartI SymbEx” has been already configured for
that (in Tab ”Test Generation”). Look at the generated trace and deduce
how it is structured in terms of actions and durations (file scenario_all.txt
in Diversity/SymbolicExecution/Output/ScenarioFiles).

Part II

Off-line testing
In black box testing, the behavior of system under test (SUT) can only be
observed by building traces while interacting with it. The test harness illustrated

6

in Figure 4 allows to send test data on the input channel sens and observe,
besides the output channel screen, all the internal channels of the system dt,
equip, and error.

sens

screen

dt

equip

thermostat

SUT

equipment

SUT

error

DIVERSITY

Test Harness

Figure 4: Thermostat system test architecture

The off-line testing process consists in three steps:
(1) first, test input sequences are extracted from paths of the symbolic ex-

ecution tree (those traces are obtained as in exercise 2 but they contain only
input actions and durations in between);

(2) test input sequences are submitted to SUT, i.e. test execution, which
produces output sequences that are merged with input sequences to form input-
output traces;

(3) resulting traces are analyzed in order to provide verdicts.

3 Exercise: Input sequence selection

Compute a test input sequence which covers the heating mode (respectively
cooling mode) by configuring the launch configuration ”PartI SymbEx” (in Tab
”Test Generation”, section ”Observable Traces Selection”), the channel(s) to
keep.

4 Exercise: Test execution

We have provided a java simulator of the thermostat system together with the
test harness of Figure 4 which takes an input sequence and generates a merged
input-output trace.

Submit the trace you have computed in exercise 3 for the heating mode
(respectively cooling mode): is the resulting trace a valid behavior of the system,
knowing that in the simulator Tmin = 20 and Tmax = 25?

The input trace should be entered in the file inputTrace.txt within the
folder Thermostatsystem_SUT. The execution of the trace is performed by click-

7

ing on the button . The result-
ing trace will be computed in the mergeTrace.txt file in the same repertory.
It may be necessary to refresh the file by using the F5 keyboard key.

5 Exercise: Verdict computation

The testing data (test purpose, verdict computation, . . .) are located in the
repertory Test. Two data have to be initialized : the trace to be analyzed (in
the mergeTrace.txt file) and the transition targeted by the testing process, the
last transition of the test purpose to be reached, in the test purpose.txt file.
You need to activate the launch configuration ”PartII OffTest” (as indicated by
the red arrow in the screenshot below) for the computation of the verdict and
the verdict is given on the “Symbex Console”.

1. Consider the following collected trace of the SUT simulating the thermo-
stat system:

delta = 1

INPUT sens(0)

delta = 1

OUTPUT screen(1)

delta = 1

OUTPUT dt(20)

delta = 2

OUTPUT equip(4)

Use Diversity to show that this is a valid behavior of SUT for Tmin = 20
and Tmax = 25. Hint: The objective is to test the heating functionality,
choose the transition e22 = (s2, c ≤ 1, x > 0, {c}, equip!4, x := x − 4, s2)
as a test purpose in order to obtain a verdict PASS.

8

2. Consider now the following collected trace of an SUT implementing the
thermostat system:

delta = 1

INPUT sens(26)

delta = 1

OUTPUT screen(2)

delta = 1

OUTPUT dt(-1)

delta = 2

OUTPUT equip(4)

Use Diversity to show that this test of SUT reveals a failure for Tmin = 20
and Tmax = 25. Hint: The objective is to test the cooling functionality,
choose the transition e32 = (s3, c ≤ 1, x < 0, {c}, equip!− 4, x := x− 4, s3)
as a test purpose in order to obtain a verdict FAIL.

3. Same question for the following trace of SUT:

delta = 1

INPUT sens(26)

delta = 1

OUTPUT screen(2)

delta = 1

OUTPUT dt(-1)

delta = 2

OUTPUT equip(-4)

delta = 1

INPUT sens(19)

delta = 1

OUTPUT screen(1)

delta = 1

OUTPUT dt(1)

delta = 2

OUTPUT equip(4)

Deduce an interesting property of the thermostat system. Hint: Explain
the failure despite the proper functioning of the cooling/heating mode.

4. Suggest a faulty SUT trace due to timing noncompliance.

5. Suggest SUT traces which cover the verdicts INCONCi, INCONCr and WEAKPASS.

9

